
Operating Systems

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

What we are going to study in this semester

 Introduction

 Data representation and operation

 Number Systems

 Data Storage

 Operations on Data

 Computer hardware

 Computer organization

 Computer network and internet

 Computer software

 Programming Languages (Python)

 Operating system

 Algorithms

2

 Data organization and abstraction

 File Structure

 Data Structure

 Abstract Data Type

 Advance topics

 Security

 Artificial intelligence (Recorded lecture)

 Data compression (Recorded lecture)

 Not covered

 Software engineering

 Databases

 Theory of computation

 Social media and social issues

Introduction

 Computer software is divided into two broad categories: the operating system

and application programs

 Application programs (應用程式) use computer hardware to solve users’ problems

 The operating system (作業系統), on the other hand, controls access to hardware by users

3

Operating system

1. An operating system is an interface between the hardware of a computer and

the user (programs or humans)

2. An operating system is a set of programs that facilitates the execution of

other programs

3. An operating system acts as a general manager supervising the activity of

each component in the computer system

 The operating system checks that hardware and software resources are used efficiently, and

when there is a conflict in using a resource, the operating system mediates to solve it

 For example, it is responsible for loading other programs into memory for execution

4

Bootstrap process (啟動程式)

 However, the operating system itself is a program that needs to be loaded into

the memory and run!

 A very small section of memory is made of ROM and holds a small program called the

bootstrap program which is pointed by the program counter when the computer is on

 This program is only responsible for loading the operating system into RAM and the

program counter in the CPU is set to the first instruction of the operating system

5

Components

 An operating system needs to manage different resources in a computer system

 A modern operating system has at least four duties memory manager, process manager,

device manager, and file manager which are the kernel

 Operating system also has a component called a user interface or a shell (介面程式) which

is responsible for communication outside the operating system

6

User interface

 User interface a program that accepts requests from users (processes) and

interprets them for the rest of the operating system

7

 Shells communicated with users through

textual messages using a keyboard and monitor

screen

 A GUI (graphical user interface, 圖形使用者介
面) allows users to issue commands by using a

mouse or other input device to manipulate the

icons

 Touch screens allow users to manipulate icons

directly with their fingers

Memory manager

 Memory allocation must be managed to prevent applications from running out

of memory

 It can be divided into two broad categories of memory management: monoprogramming

(單一程式) and multiprogramming (多重程式)

8

 In monoprogramming, most of the memory

capacity is dedicated to a single program

 In this configuration, the whole program is in

memory for execution

 The job of the memory manager is to load the

program into memory, run it, and replace it with

the next program

 This is a very inefficient use of memory and CPU

time since we need to wait for the I/O device

Memory manager

 In multiprogramming, more than one program is in memory at the same time

 They are executed concurrently, with the CPU switching rapidly between the programs

 Multiprogramming can be further divided into several categories

 Nonswapping (非置換) means that the program remains in memory for the duration of execution

9

Memory manager - Partitioning

 In partitioning (分割), memory is divided into variable-length partitions

 Each section or partition holds one program. The CPU switches between programs

 It starts with one program, executing some instructions until it either encounters an input/output

operation or the time allocated for that program has expired

 The CPU then saves the address of the memory location where the last instruction was executed

and moves to the next program

10

Memory manager - Partitioning

 Each program is entirely in memory and occupies contiguous locations.

However, there are some issues

 The size of the partitions has to be determined beforehand by the memory manager

 Even if partitioning is perfect when the computer is started, there may be some holes after

completed programs are replaced by new ones

 When there are many holes, the memory manager can compact the partitions to remove the

holes and create new partitions, but this creates extra overhead on the system!

11

Memory manager - Paging

 In paging (分頁), memory is divided into equally sized sections called frames

(框). Programs are also divided, into equally sized sections called pages

12

 The size of a page and a frame is usually the

same and equal to the size of the block used by

the system to retrieve information from a

storage device

 The program does not have to be contiguous in

memory

 Paging improves efficiency to some extent, but

larger program still needs to be in memory

before being executed

Memory manager - Demand paging

 Paging still requires that the entire program be in memory for execution

13

 In demand paging (需求分頁) the program

is divided into pages, but the pages can be

loaded into memory one by one, executed,

and replaced by another page

 The program can be swapped between

memory and disk!

Memory manager - Demand segmentation

 In demand segmentation (需求分段), the program is divided into segments that

match the programmer’s view

14

 In demand segmentation, the program

is divided into modules that match

the programmer’s view

 Since segments in memory are still of

equal size, part of a segment may

remain empty

Memory manager - Virtual memory

 Demand paging and demand segmentation mean that, when a program is being

executed, part of the program is in memory and part is on disk!

 This large “fictional” memory space created by paging is called virtual memory (虛擬記憶
體)

15

Process manager

 Modern operating systems use three terms that refer to a set of instructions

 Program (程式): A program is a nonactive set of instructions stored on a disk. It may or

may not become a job

 Job (工作): A program becomes a job from the moment it is selected for execution until it

has finished running and becomes a program again

 During this time a job may or may not be executed and it may be on disk or in memory

 Process (行程): A process is a job that is being run in memory

 As long as the job is in memory, it is a process

16

Process manager - State diagrams

 The relationship can be illustrated with a state diagram

17

1. A program becomes a job when

selected by the operating system and

brought to the hold state

2. When there is memory space available

to load the program totally or partially,

the job moves to the ready state and

becomes a process

3. It remains in memory and in this state

until the CPU can execute it, moving

to the running state

4. When it encounters I/O it enters wait

state and it goes into the terminated

state when finishing

Process manager – Schedulers (排程器)

 To move a job or process from one state to another, the process manager uses

two schedulers: the job scheduler and the process scheduler

 A job scheduler is responsible for creating a process from a job and terminating a process

18

Process manager - Schedulers

 The process scheduler moves a process from one state to another

 It moves a process from the running state to the waiting state when the process is waiting

for some event (interrupt) to happen

 It moves a process from the running state to the ready state if the process’ time allotment

has expired

19

Process manager – Queuing (佇列)

 In reality, there are many jobs and many processes competing with each other

for computer resources

 To handle multiple processes and jobs, the process manager uses queues

 There is a job control block or process control block associated with each job or process

that stores the information about the job or process

 The process manager stores the job or process control block in the queues instead of the job or

process itself!

20

Process manager - Queuing

 An OS can have several queue and the process manager can have different

policies for selecting the next job or process from a queue

21

Process manager - Process synchronization (同步)

 The whole idea behind process management is to synchronize different

processes with different resources

 We can have two problematic situations: deadlock (死結) and starvation (飢餓)

 Deadlock occurs if the operating system allows a process to start running without first

checking to see if the required resources are ready, and allows a process to hold a resource

as long as it wants

22

Process manager - Process synchronization

 Solutions

 Not to allow a process to start running until the required resources are free

 Limit the time a process can hold a resource

 There are four necessary conditions for deadlock

1. Mutual exclusion: Only one process can hold a resource

2. Resource holding: A process holds a resource even though it cannot use it until other

resources are available

3. No preemption (不可搶先): The operating system cannot temporarily reallocate a

resource

4. Circular waiting: All processes and resources involved form a loop

23

Process manager - Process synchronization

 Starvation is the opposite of deadlock. It can happen when the operating

system puts too many resource restrictions on a process

24

Device manager

 The device manager, or input/output manager, is responsible for access to

input/output devices

1. The device manager monitors every input/output device constantly to ensure that the

device is functioning properly. The manager also needs to know when a device has

finished serving one process and is ready to serve the next process in the queue

2. The device manager maintains a queue for each input/output device or one or more

queues for similar input/output devices. For example, if there are two fast printers in the

system, the manager can have one queue for each or one queue for both

3. The device manager controls the different policies for accessing input/output devices. For

example, it may use FIFO for one device and the shortest length first for another

25

File manager

 File manager is used to controlling the access to files

1. The file manager controls access to files. Access is permitted only by permitted

applications and/or users, and the type of access can vary

2. The file manager supervises the creation, deletion, modification and naming of files

3. The file manager supervises the storage of files: how they are stored, where they are

stored, and so on

4. The file manager is responsible for archiving and backups

26

Example - UNIX

 UNIX consists of four major components: the kernel (核心), the shell, a

standard set of utilities (公用程式), and application programs

27

 Kernel

 It contains the most basic parts of the

operating system: memory

management, process management,

device management, and file

management

 Another component of the kernel

consists of a collection of device

drivers (驅動程式), which are the

software units that communicate with

the controllers

Example - UNIX

 Shell

 It receives and interprets the commands entered by the user

 Utilities

 A utility is a standard UNIX program that provides a support process for users

 Three common utilities are text editors, search programs, and sort programs

 Applications

 Applications in UNIX are programs that are not a standard part of the operating system

distribution

 They provide extended capabilities to the system

28

Appendix

29

Memory manager - Demand paging and segmentation

 Demand paging and segmentation can be combined to further improve the

efficiency of the system

 A segment may be too large to fit any available free space in memory. Memory can be

divided into frames, and a module can be divided into pages. The pages of a module can

then be loaded into memory one by one and executed

30

Evolution - Batch systems (批次系統)

 Batch operating systems were designed in the 1950s to control mainframe

 At that time, computers used punched cards for input, line printers for output, and tape

drives for secondary storage media

 Each program to be executed was called a job and the punched cards were fed into the

computer by an operator

 Operating systems during this era were very simple: they only ensured that all of the

computer’s resources were transferred from one job to the next!

31

Time-sharing systems (分時系統)

 The idea of time sharing arises: resources could be shared between different

jobs, with each job being allocated a portion of time to use a resource

 One means of implementing time-sharing is to apply the technique called

multiprogramming

 For example, when one program is using an input/output device, the CPU is free and can

be used by another program

 Time-sharing is hidden from the user - each user has the impression that the

whole system is serving them exclusively!

 The operating system now had to do scheduling (排程): allocating resources to different

programs and deciding which program should use which resource, and when

 The user could directly interact with the system without going through an operator!

32

Personal systems (個人系統)

 When personal computers were introduced, there was a need for an operating

system for this new type of computer

 During this era, single-user operating systems such as DOS (Disk Operating System) were

introduced

33

Parallel systems (平行系統)

 The need for more speed and efficiency led to the design of parallel systems:

multiple CPUs on the same machine

 Each CPU can be used to serve one program or a part of a program, which means that

many tasks can be accomplished in parallel instead of serially

 The operating systems required for this are more complex than those that support single

CPUs

34

Distributed systems (分散式系統)

 A job that was previously done on one computer can now be shared between

computers that may be thousands of miles apart by network

 A program may need files located in different parts of the world

 Operating systems combine features of the previous generation with new duties such as

controlling security

35

Real-time systems (即時系統)

 A real-time system is expected to do a task within specific time constraints

 Examples can be found in traffic control, patient monitoring, or military control systems

 The application program can sometimes be an embedded system such as a component of a

large system, such as the control system in an automobile

 The requirements for a real-time operating system are often different than those for a

general-purpose system!

36

Example - UNIX

 UNIX is a very powerful operating system with three outstanding features

1. UNIX is a portable operating system that can be moved from one platform to another

without many changes. The reason is that it is written mostly in the C language (instead

of a machine language specific to a particular computer system)

2. UNIX has a powerful set of utilities (commands) that can be combined (in an executable

file called a script) to solve many problems that require programming in other operating

systems

3. It is device-independent, because it includes device drivers in the operating system itself,

which means that it can be easily configured to run any device

37

Example - Linux

 The initial kernel of Linux was similar to a small subset of UNIX and now it

mainly contain the following components

 Kernel

 System libraries (系統函式庫)

 The system libraries hold a set of functions used by the application programs, including the shell,

to interact with the kernel

 System utilities (系統公用程式)

 The system utilities are individual programs that use the services provided by the system libraries

to perform management tasks

 Linux supports the standard Internet protocols

 Linux’ provides the security aspects defined traditionally for UNIX, such as

authentication and access control

38

Example - Windows

 The design goals released by Microsoft are

 Extensibility

 Windows is designed as a modular architecture with several layers. The purpose is to let the

higher layers to be changed with time without affecting the lower layers

 Portability

 Windows, like UNIX, is mostly written in C or C++ and the code is independent of the machine

language of the computer on which it is running

 Reliability

 Windows was designed to handle error conditions including protection from malicious software

 Compatibility

 Windows was designed to run programs written for earlier versions of Windows

 Performance

 Windows was designed to have a fast response time to applications that run on top of the

operating system
39

Example - Windows

 Windows uses a layered architecture

 Hardware abstraction layer (HAL, 硬體抽象層)

 Hides hardware differences from the upper layers

 Kernel

 The kernel is the heart of the operating system. It is an object-oriented piece of software that sees

any entity as an object

 Executive (執行器)(Runs in kernel (privileged) mode)

 The Windows executive provides services for the whole operating system. It is made up of six

subsystems: object manager, security reference monitor, process manager, virtual memory

manager, local procedure call facility, and the I/O manager

 Environmental subsystems (環境子系統)(Runs in the user mode)

 These are subsystems designed to allow Windows to run application programs designed for

Windows, for other operating systems, or for earlier versions of Windows

40

Example - Windows

41

